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Abstract—In recent times, improvements in imaging
technology have made available an incredible array of
information in image format.  While powerful and
sophisticated image processing software tools are available
to prepare and analyze the data, these tools are complex
and cumbersome, requiring significant expertise to properly
operate.  Thus, in order to extract (e.g., mine or analyze)
useful information from the data, a user (in our case a
scientist) often must possess both significant science and
image processing expertise. 

This paper describes the use of Artificial Intelligence (AI)
planning techniques to represent scientific, image
processing, and software tool knowledge to automate
elements of science data preparation and analysis of
synthetic aperture radar (SAR) imagery for planetary
geology. In particular, we describe the Automated SAR
Image Processing system (ASIP) which is currently in use
by the Department of Geology at Arizona State University
(ASU) supporting aeolian science analysis of synthetic
aperture radar images.  ASIP reduces the number of
manual inputs in science product generation by 10-fold,
decreases the CPU time to produce images by 30%, and
allows scientists to directly produce certain science
products.
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1. INTRODUCTION

Recent breakthroughs in imaging technology have led to an
explosion of available data in image format.  However,
these advances in imaging technology have brought with
them a commensurate increase in the complexity of image
processing and analysis technology. When analyzing newly
available image data to discover patterns or to confirm
scientific theories, a complex set of operations is often
required.  First, before the data can be used it must often be
reformatted, cleaned, and many correction steps must be
applied. Then, in order to perform the actual data analysis,
the user must manage all of the analysis software packages
and their requirements on format, required information,
etc.

Furthermore, this data analysis process is not a one-shot
process. Typically a scientist will set up some sort of
analysis, study the results, and then use the results of this
analysis to modify the analysis to improve it.  This analysis
and refinement cycle may occur many times - thus any
reduction in the scientist effort or cycle time can
dramatically improve scientist productivity.  Consider the
goal of studying the soil sediment transport (wind erosion
patterns).  In order to do this the scientist uses a z0map
(described later) to analyze the surface wind velocities
using SAR data.  In order to generate the z0map the
scientist must go through a number of processes:

(1) data acquisition: getting the data from a
proprietary tape format using the CEOS reader
software package

(2) data conversion: the data must be decompressed
using yet another  software package

(3) pre-processing: header and label files must be
added to the date files

(4) processing: using the z0map software package a z0
map image is created and

(5) post processing: depending on the desired data
format the z0 map image files may need to be
converted to VICAR format (yet another
proprietary format). 



Unfortunately, this data preparation and analysis process is
both knowledge and labor intensive.

To correctly produce this science product for analysis, the
scientist must have knowledge of a wide range of sources
including:

(1) the particular science discipline of interest (e.g.,
atmospheric science, planetary geology),

(2) image processing and the image processing 
libraries available,

(3) where and how the images and associated
information are stored (e.g., calibration files), and

(4) the overall image processing environment to know
how to link together libraries and pass information
from one program to another.

It takes many years of training and experience to acquire
the knowledge necessary to perform these analyses, putting
these experts in high demand. One factor that exacerbates
this shortage of experts, is the extreme breadth of
knowledge required.  Many users might be knowledgeable
in one or more of the above areas, but not in all of the
areas. In addition, the status quo requires that users possess
considerable knowledge about software infrastructure. 
Users must know how to specify input parameters (format,
type, and options) for each software package that they are
using and must often expend considerable effort in
translating information from one package to another.

Using automated planning technology to represent and
automate many of these data analysis functions [9](page
50) [6] enables novice users to utilize the software libraries
to prepare and analyze data.  It also allows users who may
be expert in some areas but less knowledgeable in others to
use the software tools.

The remainder of this article is organized as follows. First,
we provide a brief overview of the key elements of AI
planning.  We then describe the ASIP system, which
automates elements of image processing science data
analysis of synthetic aperture radar (SAR) images. 

2. ARTIFICIAL INTELLIGENCE PLANNING

TECHNIQUES

We have applied and extended techniques from Artificial
Intelligence planning to address the knowledge-based
software reconfiguration problem [5] in general, and
science data analysis in particular.  In order to describe this
work, we first provide a brief overview of the key concepts
from planning technology1.

Planning technology relies on an encoding of possible
actions in the domain.  In this encoding, one specifies for
each action in the domain: preconditions, post-conditions,
and sub-activities. Preconditions are requirements that
must be met before the action can be taken.  These may be
pieces of information, which are required to correctly apply

                                                       
1 For further details on planning the user is referred to [20, 8]

a software package (such as the image format, availability
of calibration data, etc.)  Post-conditions are things that are
made true by the execution of the actions, such as the fact
that the data has been photometrically corrected (corrected
for the relative location of the lighting source) or that 3-
dimensional topography information has been extracted
from an image.  Sub-activities are lower level activities that
comprise the higher level activity.  For instance, returning
to our example of analyzing soil sediment transport using
SAR data, the different tasks (e.g., data acquisition, data
conversion, etc.) are considered subtasks of the overall
product generation process.  The planner begins with the
process of "determining parameters".  This step is driven by
the type of data format or mode of the SAR equipment was
in during data collection.  Through this decomposition
process parameters to be used in the z0map calculation are
initialized. Given this encoding of actions, a planner is able
to solve individual problems, where each problem is a
current state and a set of goals.  The planner uses its action
models to synthesize a plan (a set of actions) to achieve the
goals from the current state.

Planning consists of three main mechanisms: subgoaling,
task decomposition, and conflict analysis.  In subgoaling, a
planner ensures that all of the preconditions of actions in
the plan are met. This can be done by ensuring that they are
true in the initial state or by adding appropriate actions to
the plan.  In task decomposition, the planner ensures that
all high level (abstract) activities are expanded so that the
lower level (sub-activities) activities are present in the plan.
 This ensures that the plan consists of executable activities.
Conflict analysis ensures that different portions of the plan
do not interfere with each other.

3. THE AUTOMATED SAR IMAGE PROCESSING

(ASIP) SYSTEM

The Automated SAR Image Processing (ASIP) system
automates synthetic aperture radar (SAR) image processing
based on high level user request and a knowledge-base
model of SAR image processing using AI automated
planning techniques [10, 11].  SAR operates
simultaneously in multipolarizations2 and multifrequencies3

to produce different images consisting of radar backscatter
coefficients (s0) through different polarizations at different
frequencies.  ASIP enables construction of an aerodynamic
roughness image/map (z0 map) from raw SAR data - thus
enabling studies of Aeolian processes.

Studies of Aeolian Processes

The aerodynamic roughness length (z0) is the height above
a surface at which a wind profile assumes zero velocity.  z0
is an important parameter in studies of atmospheric
circulation and aeolian sediment transport (in layman's
terms: wind patterns, wind erosion patterns, and sand/soil
drift caused by wind) [12, 13, 14].  Estimating z0 with
radar is important because it enables large areas to be
                                                       
2 There are four combinations of polarization: HH, HV, VH, and VV, where
H = Horizontal  and V= Vertical.
3 There are three frequencies used: P, L, and C bands.



mapped quickly to study aeolian processes, as opposed to
the slow painstaking process of manually taking field
measurements [1]. The final science product is a VICAR
image called a z0 map4 that the scientists use to study the
aeolian processes.  Scientists use aerodynamic roughness
length to determine whether a surface in a dry land region
with little or no vegetation will erode and grains will
mobilize during windstorms.

z0 Map Production

As mentioned in the Introduction there are five steps
involved in producing a z0-map:

(1) data acquisition
(2) data conversion
(3) pre-processing
(4) processing
(5) post-processing

The SAR data files are extracted from tape to disk using the
CEOS5 Reader software package, and an ASCII version of
the CEOS imagery options file is generated. This ASCII
file which is obtained from the CEOS headers associated
with the SAR data file is needed by the header construction
software in order to generate the header file needed for
decompression of SAR data file into an image file. The
common block header file consist of 6 items:

(1) data type is one of the following :
• single pol/MLD,
• quad pol/MLC,
• dual pol/MLC,
• quad pol/SLC,
• dual pol/SLC,
• single pol/SLC.

(2) data mode is one of the following
band/polarization encodings:

• Lquad, Cquad,
• LHH and LVV or CHH and CVV,
• LHH and LHV or CHH and CHV,
• LVH and LVV or CVH and CVV,
• LHH or CHH,
• LVV or CVV,
• other single pol data.

(3) input image record length
(4) number of samples6

(5) number of lines
(6) number of bytes per sample

The SAR data file and header file are needed by z0map
software to generate a z0-map image in which a color bar
scale is also included to show the height of the aerodynamic
roughness length approximation as represented by color. 
The output z0-map image may be either in raw format or
VICAR format. The z0map software converts the radar
backscatter coefficients in dB into an aerodynamic

                                                       
4 z0 is pronounced “Z-naught” (as in z-axis, zero velocity)
5 Committee on Earth Observation Satellites (CEOS)
6 Number of samples collected per line (i.e. number of columns).

roughness length approximation in meters by using the
empirical model derived from field measurements of wind
profiles and simultaneous AIRSAR flights. The empirical
model shows strong correlation between the log value of
aerodynamic roughness and the radar backscatter
coefficient. The best correlation was found with L-band.

In general, the z0-map images for all of the possible
polarizations and for P, L, and C bands are generated for
analysis. These band-polarizations pairs consist of P-HH, P-
HV, P-VV, L-HH, L-HV, L-VV, C-HH, C-HV, and C-VV.

Unfortunately, this data preparation and analysis process is
both knowledge and labor intensive.

Planning to Generate Aerodynamic Roughness Maps

ASIP, an end-to-end image processing system automating
data abstraction, decompression, and (radar) image
processing, integrates a number of SAR and z0 image
processing software packages.  Using a knowledge base of
SAR processing actions and a general-purpose planning
engine, ASIP reasons about the parameter and sub-system
constraints and requirements: extracting needed parameters
from image format and header files as appropriate (freeing
the user from these issues). These parameters, in
conjunction with the knowledge-base of SAR processing
steps (see Figure 1) and a minimal set of required user
inputs (entered through a graphical user interface (GUI)),
are then used to determine the processing plan.  ASIP
represents a number of processing constraints (e.g., only
some subset of all the possible combinations of
polarizations is legal, as dependent on the input data). 
ASIP also represents image processing knowledge about
how to use polarization and frequency band information to
compute parameters used for later processing of backscatter
to aerodynamic roughness length conversions, thus freeing
the user from having to understand these processes (see
Figure 1).
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Figure 1: Sample Decomposition Rule from
ASIP SAR Domain



The design of ASIP focuses on automation to make a
variety of software tools function together.  In the process
of accomplishing this goal, many of the interfaces of the
individual tools where modified to provide automated
interfaces.  Through these new automated interfaces,
considerable information, previously entered into each tool
through an interactive shell, is passed from one tool to
another.  In many cases the same information must be
provided to many of the tools.  In some cases the
information is the same but the required format may differ
from one tool to another.  Many of the parameters provided
to the tools are interdependent on as many as five other
parameters.  As the parameters become more
interdependent it becomes more difficult to understand the
process. Through these new automated interfaces many of
these parameters are passed to the planning system and the
knowledge base is used by the planner to reason about the
interdependencies to set the resulting parameters
appropriately.  Going back to the ASIP design, ASIP
actually calls the planner twice. In the first call the planner
determines the steps (tools) necessary to accomplish the
processing task (goals); and determines how to set
parameters needed in generating the header files.  Once the
data has been extracted and more data has been gathered,
the planner is called a second time to further reason about
the parameter settings needed to complete the remainder of
the processing goals.  The two knowledge bases combined
contain 29 rules.

Figure 1 shows an example of a task decomposition rule. In
the rule get_z0map_coef_l-hv, we see that if the
preconditions spelled out in the lhs (left-hand side) are met
then the parameters and coefficients of the rhs (right-hand
side) are set for later use.  Although not shown, the lhs of
the get_z0map_coef_l-hv rule is satisfied by the application
of other planning operators and rules.

Figure 2 shows an aerodynamic roughness length map of a
site near Death Valley, California generated using the ASIP
system (the map uses the L band (24 cm) SAR with HV
polarization).  This aerodynamic roughness length map or
z0-map is the final product of the ASIP tool and image
processing endeavor.  Each of the color scale bands
indicated signifies a different approximate aerodynamic
roughness length.  The scale is a logarithmic scale ranging
from 1x10-1 meters to 1x10-5 meters.  For this image the
bottom of the scale represents the roughest terrain, while
the top of the scale represents the smoothest terrain.  This
map is then used to study aeolian processes at the Death
Valley site. 

4. APPLICATION USE AND PAYOFFS

Since the ASIP system was fielded in January 1997, it has
proven to be very useful in the use of generating
aerodynamic roughness maps with three major benefits.

(1) ASIP has enabled a 10-fold reduction in the
number of manual inputs required to produce an
aerodynamic roughness map.

(2) ASIP has enabled a 30% reduction in CPU
processing time to produce such a map (by
producing more efficient processing plans).

(3) Most significantly, ASIP has enabled scientists to
process their own data.  (Previously programming
staff was required.)

By enabling scientists to directly manipulate the data and
reducing processing overhead and turnaround, science is
directly enhanced.

5. APPLICATION DEVELOPMENT, DEPLOYMENT

AND MAINTENANCE

The development of the ASIP system took approximately
six work months7. During that period, the system was
developed and deployed using an iterative waterfall
development cycle containing three incremental
deployments.  The development team consisted of one AI
Planning researcher from JPL and a SAR domain expert
from ASU, who later became one of the users of the system
after deployment to the ASU Planetary Geology
Department.  The system was both developed and deployed
on a Sun UNIX workstation using a combination of C,
FORTRAN, and TCL/TK.

The users of the system at ASU perform the maintenance of
the ASIP system.  Because of the nature of the SAR
domain, modifications to the knowledge base are not
expected to be frequent. There are three types of
information that must be maintained in the ASIP
knowledge base:

(1) the values of the correlation coefficients,
(2) the relationship between the coefficients, and
(3) the relationship between the systems activities

used to process the SAR data. 
Because the values for the correlation coefficients are found
experimentally, it is expected that this portion of the system
will require the most likely modification.  A need to modify
these values would come through a greater understanding
of the SAR data and the z0-map technique.  Because of the
declarative representation of the knowledge base, this is an
easy modification to make.  This ease of modification is a
significant benefit to using a planning approach over a
procedural approach.

                                                       
7 One factor contributing to the short development cycle was the use of a pre-
existing general purpose planning engine.

Figure 2: Aerodynamic Roughness Length Map
Produced Using ASIP



If represented procedurally any interdependency
relationship between the values or activities must be coded
with in the logic of the program, generally complex nested
“if” statements.  This sort of approach is difficult to modify,
maintain, and extend.  Where as a planning representation
allows for encoding these relationships in a very modular
fashion, which is easy to maintain and modify.  Further,
this domain specific knowledge (rules) are independent
from the code used to reason about them.  This offers
several advantages:

(1) the reasoning engine (code) can be tested and
validated, independent to the changes in the
domain requirements and understanding. 

(2) The KB can be validated and modified
independent of the engine. 

(3) Different KB’s can be plugged in at run time to
experiment with different domain hypotheses.

There are two other benefits of the declarative
representation of the knowledge-base worthy of pointing
out.

(1) Because the knowledge-base is an ASCII text file
loaded into ASIP at run time, modifications to
processing rules do not require that the system be
recompiled, as would be the case in a procedural
system.  This also allows for greater flexibility in
tuning of parameters (coefficients) between runs.

(2) The declarative knowledge base provides a form of
documentation of the image processing procedure
/process.

6. RELATED WORK

Related work can be broadly classified into the following
categories: related image processing languages, related
automated image processing work, and related AI planning
work.  In terms of related image processing languages,
there are many commercial and academic image processing
packages, such as IDL, Aoips, and Merlyn.  Generally,
these packages have only limited ability to automatically
determine how to use different image processing programs
or algorithms based on the problem context (e.g., other
image processing goals and initial image state).  These
packages only support such context sensitivity for a few
pre-anticipated cases.

However, there are several previous systems for automatic
image processing that use a domain independent
mechanism.   The work at the Canadian Centre for Remote
Sensing (CCRS) [4] differs from ASIP in that they use a
case-based reasoning approach in which a problem is
solved by searching for a previous problem and solution.

Grimm and Bunke [15] developed an expert system to
assist in image processing within the SPIDER library of
image processing routines.  This system uses many similar
approaches in that: (1) it classifies problem types similar to
the fashion in which ASIP performs skeletal planning; and
(2) it also decomposes larger problems into subproblems

which ASIP performs in decomposition planning.  This
system is implemented in a combination of an expert
system shell called TWAICE (which includes both rules
and frames) and Prolog. 

This very basic implementation language provides
considerable power and flexibility but means that their
overall system uses a less declarative representation than
our decomposition rules and operators which have a strict
semantics [8, 3]. 

Previous work on automating the use of the SPIDER library
includes [21], which performs constraint checking, and step
ordering for a set of conceptual image processing steps and
generation of executable code.   This work differs from
ASIP in that: (1) they do not infer missing steps from step
requirements; (2) they do not map from a single abstract
step to a context-dependent sequence of image processing
operations; and (3) they do not reason about negative
interactions between subproblems.  ASIP has the capability
to represent and reason about all three of these cases. 
Other work by Jiang and Bunke [16] involves generation of
image processing procedures for robotics.  This system
performs subgoaling to construct image-processing plans. 
However their algorithm does not appear to have a general
way of representing and dealing with negative interactions
between different subparts of the plans.  In contrast, the
general Artificial Intelligence Planning techniques used by
ASIP use conflict resolution methods to guarantee correct
handling of subproblem interactions.

Another piece of related work is the SATI system [2],
which uses an interactive dialogue with the user to drive an
automated programming approach to generating code to
satisfy the user request. OCAPI [7], a semantically
integrated automated image processing system, while being
very general provides no clear way to represent the large
number of logical constraints associated with the problems
ASIP was designed to solve. Another image processing
system [19] provides a means for representing knowledge
of image analysis strategies in an expert system but does
not use the more declarative AI planning representation. 
Perhaps the most similar planning and image processing
system is COLLAGE [17].  The COLLAGE planning
differs from ASIP in that COLLAGE uses solely the
decomposition approach to planning. 

Finally, the most closely related system to ASIP is MVP
[6].  The greatest similarity being MVP and ASIP use the
same AI Planning techniques to capture and reason about
the knowledge of image processing.  The primary
differences lie in the domains and in the packaging.  MVP
produces VICAR procedure definition files (PDFs) for
VICAR image processing [18], while ASIP performs end-
to-end closed loop integration of all the tools for SAR
image processing.

7. CONCLUSIONS

This paper has described knowledge-based reconfiguration
of data analysis software using AI planning techniques.  In
particular, we have described the ASIP system, which



automates production of aerodynamic roughness maps to
support geological science analysis.  ASIP reduces the
number of manual inputs in science product generation by
10-fold, has reduced the CPU processing time by 30%, and
has enabled scientists to directly produce certain science
products.
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